metal-organic compounds

Mo $K\alpha$ radiation

 $0.25 \times 0.22 \times 0.18 \text{ mm}$

 $\mu = 1.28 \text{ mm}^{-1}$

T = 295 (2) K

Z = 1

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chlorido(1-pyrrolidinecarbodithioato- $\kappa^2 S, S'$)(triphenylphosphine- κP)nickel(II) chloroform hemisolvate

Anna Kropidłowska,^a Jan Janczak,^b Jolanta Gołaszewska^a and Barbara Becker^a*

^aDepartment of Inorganic Chemistry, Chemical Faculty, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-952 Gdańsk, Poland, and ^bInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław, Poland

Correspondence e-mail: bbecker@chem.pg.gda.pl

Received 18 May 2007; accepted 6 June 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.058; wR factor = 0.119; data-to-parameter ratio = 21.2.

In the crystal structure of the title complex, [Ni{S₂CN(CH₂)₄]Cl(C₁₈H₁₅P)] $\cdot 0.5$ CHCl₃, the Ni atom is coordinated by a bidentate dithiocarbamate, one chloride and triphenylphosphine in a square-planar arrangement. The chloroform solvent molecule interacts with the complex through a weak C-H···S hydrogen bond. The solvent molecule is disordered equally over two inversion-related sites.

Related literature

For related literature, see: Allen (2002); Garton *et al.* (1963); Kropidłowska *et al.* (2007); Pastorek *et al.* (1996, 1999); Venanzi (1958).

Experimental

Crystal data $[Ni(C_5H_8NS_2)Cl(C_{18}H_{15}P)]$ --0.5CHCl₃ $M_r = 1124.72$

Triclinic, $P\overline{1}$ a = 9.713 (2) Å b = 10.076 (2) Å c = 14.509 (3) Å $\alpha = 90.37 (2)^{\circ}$ $\beta = 91.21 (2)^{\circ}$ $\gamma = 117.39 (2)^{\circ}$ $V = 1260.3 (5) \text{ Å}^{3}$

Data collection

Kuma KM-4 with CCD area	16395 measured reflections
detector diffractometer	6060 independent reflections
Absorption correction: analytical	3417 reflections with $I > 2\sigma(I)$
(face-indexed) (SHELXTL;	$R_{\rm int} = 0.050$
Sheldrick, 1990)	
$T_{\min} = 0.741, \ T_{\max} = 0.799$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	6 restraints
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$
6060 reflections	$\Delta \rho_{\rm min} = -0.51 \text{ e} \text{ Å}^{-3}$
286 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
C37-H37S1	0.96	2.40	3.280 (1)	151.6

Data collection: *CrysAlisCCD* (Oxford Diffraction, 2005); cell refinement: *CrysAlisCCD*; data reduction: *CrysAlisRED* (Oxford Diffraction, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Ministry of Science and Higher Education (Poland) (grant No. 1T09A 117 30).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2018).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Garton, G., Henn, D. E., Powell, H. M. & Venanzi, L. M. (1963). J. Chem. Soc. pp. 3625–3629.
- Kropidłowska, A., Janczak, J., Gołaszewska, J. & Becker, B. (2007). Acta Cryst. E63, m1391–m1392.
- Oxford Diffraction (2005). CrysAlisCCD and CrysAlisRED. Versions 171.31.8. Oxford Diffraction Poland, Wrocław, Poland.
- Pastorek, R., Trávníček, Z., Kvapilova, E., Šindelář, Z. & Březina, F. (1996). Polyhedron, 15, 3691–3695.
- Pastorek, R., Travnicek, Z., Kvapilova, E., Sindelar, Z., Brezina, F. & Marek, J. (1999). Polyhedron, 18, 151–157.
- Sheldrick, G. M. (1990). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Venanzi, L. M. (1958). J. Chem. Soc. pp. 719-724.

supplementary materials

Acta Cryst. (2007). E63, m1947 [doi:10.1107/S1600536807027791]

$\label{eq:chlorido} Chlorido(1-pyrrolidinecarbodithioato-\kappa^2 S, S') (triphenylphosphine-\kappa P) nickel (II) \qquad chloroform hemisolvate$

A. Kropidlowska, J. Janczak, J. Golaszewska and B. Becker

Comment

The 1-Pyrrolidinecarbodithioato-group is one of the most frequently used sulfur donor ligands and structural data for nearly 100 complexes are stored in the Cambridge Structural Database (CSD-2007, Allen 2002). Recently, we reported the synthesis of the tris(1-pyrrolidinylcarbodithioato-*S*,*S*')-cobalt(III) complex obtained as chloroform disolvate $[Co(S_2CN(CH_2)_4)_3] \times 2CHCl_3$ (I) (Kropidłowska *et al.* 2007). The most notable feature of its structure was the apparent interaction of CHCl₃ with a sulfur atom from the ligand (Cl₃C—H···S).

In the present paper we describe the structure of a nickel(II) complex - chlorido(1-pyrrolidinecarbodithioato-*S*,*S*')(triphenylphosphine)nickel(II) (I) which was isolated as a chloroform hemisolvate. It can be regarded as a dithiocarbamate complex with a four-coordinated metal(II) ion within a square planar, heterogeneous [NiClS₂P] coordination sphere. There are only small deviations from planarity, not exceeding 0.07 Å. The molecular structure of (I) with atom numbering scheme is shown in Fig.1. The solvating chloroform molecule is equally disordered over two sites related by an inversion center. Again, the interaction of CHCl₃ with the complex seems to be present (Cl₃C—H···S distance equals 2.4 Å) and one can suppose that weak C—H···S hydrogen bond is formed, somewhat reinforcing the structure (Fig. 2). Short Cl1···S2 (3.341 Å) as well as some short C_{ar}H···Cl (*ca* 2.93 Å) contacts may be also noticed.

The structures of two similar hemisolvated nickel(II) complexes have been reported previously: homologous bromido(1pyrrolidinylcarbodithioato-*S*,*S*')(triphenylphosphine)nickel(II) (refcode TIZJAN, Pastorek *et al.*, 1996) and closely related thiazolidinedithiocarbamate with nickel(II) bonded to triphenylphosphine and chloride ligands (refcode GOZBUS, Pastorek *et al.*, 1999). However, in both cases, the Cl₃C—H···S distance is greater than 2.7 Å and even speculations about the existence of any weak hydrogen bond seem doubtful.

Experimental

Nickel chloride, NiCl₂ × 6H₂O (0.594 g, 0.0025 mol, purchased from POCh) was dissolved in 50 ml of methanol/water (10/1, v/v) and this solution was added dropwise to the ammonium salt of pyrrolidinecarbodithioic acid C₄H₈NCS₂NH₄ (0.82 g, 0.005 mol, Fluka) dissolved in methanol/water. This mixture was stirred vigorously under argon atmosphere for *app*. 20 minutes, then filtered and the filtrate left for crystallization at 5°C. After a week the green crystalline product Ni(S₂CNC₄H₈)₂ was collected. It was further dissolved (0.199 g, 0.00057 mol) in 10 ml of chloroform and mixed with solution of equimolar amount of NiCl₂(PPh₃)₂ (0.37 g) prepared as described in the literature (Venanzi, 1958; Garton *et al.* 1963). The mixture which turned into deep violet color, was stirred for 10 minutes and then filtered. To this solution 10 ml of Et₂O was added. After dwo days purple crystals were collected and washed with several portions of ether.

Refinement

All H atoms were positioned geometrically and treated as riding with $U_{iso}(H)$ values of $1.5U_{eq}$ of the C joined directly the H or $1.2U_{eq}$ of the C joined H for aromatic. The solvated molecule of CHCl₃ is statistically disordered (occupation factor of 1/2).

Figures

Fig. 1. Molecular structure and atom-numbering scheme for (I) with displacement ellipsoids drawn at 50% probability level. The chloroform molecule is disordered - only one set is shown. Broken line denotes the assumed C—H···S hydrogen bond. Color codes: Ni pink-red, N blue, S yellow, Cl green, P orange, C gray. H atoms are shown as small white rings of arbitrary size.

Fig. 2. Schematic drawing of the crystal packing of molecules of (I) showing the C—H···S interactions. Besides chloroform, all other H atoms have been omitted for clarity.

Chlorido(1-pyrrolidinecarbodithioato- $\kappa^2 S_r S'$)(triphenylphosphine- κP)nickel(II) chloroform hemisolvate

Crystal data	
$[Ni(C_5H_8NS_2)Cl(C_{18}H_{15}P)] \cdot 0.5CHCl_3$	Z = 1
$M_r = 1124.72$	$F_{000} = 578$
	$D_{\rm x} = 1.482 \ {\rm Mg \ m^{-3}}$
Triclinic, PT	$D_{\rm m} = 1.48 \ {\rm Mg \ m}^{-3}$
	$D_{\rm m}$ measured by floatation
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 9.713 (2) Å	Cell parameters from 876 reflections
b = 10.076 (2) Å	$\theta = 2.7 - 28.0^{\circ}$
c = 14.509 (3) Å	$\mu = 1.28 \text{ mm}^{-1}$
$\alpha = 90.37 \ (2)^{\circ}$	T = 295 (2) K

 $\beta = 91.21 (2)^{\circ}$ $\gamma = 117.39 (2)^{\circ}$ $V = 1260.3 (5) \text{ Å}^3$

Data collection

Kuma KM-4 with CCD area detector diffractometer	6060 independent reflections
Radiation source: fine-focus sealed tube	3417 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.050$
Detector resolution: 1024x1024 with blocks 2x2 pixels mm ⁻¹	$\theta_{max} = 28.0^{\circ}$
T = 295(2) K	$\theta_{\min} = 2.7^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: analytical (face-indexed) (SHELXTL; Sheldrick, 1990)	$k = -13 \rightarrow 10$
$T_{\min} = 0.741, \ T_{\max} = 0.799$	$l = -18 \rightarrow 19$
16395 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.119$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0351P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.006$
6060 reflections	$\Delta \rho_{max} = 0.48 \text{ e } \text{\AA}^{-3}$
286 parameters	$\Delta \rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$
6 restraints	Extinction correction: none
Drimary atom site logation: structure invariant di	irect

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Paralellepiped, purple

 $0.25\times0.22\times0.18~mm$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cl4	0.11616 (10)	0.13720 (11)	0.28665 (7)	0.0926 (4)	
Ni	0.36198 (4)	0.29476 (4)	0.28472 (3)	0.05004 (11)	
S1	0.33333 (9)	0.44183 (9)	0.38849 (6)	0.0619 (3)	
S2	0.59132 (9)	0.48808 (9)	0.28702 (6)	0.0633 (3)	
C1	0.5177 (3)	0.5698 (3)	0.36361 (19)	0.0538 (9)	
N1	0.5905 (3)	0.7057 (3)	0.39337 (17)	0.0562 (8)	
C2	0.5209 (4)	0.7713 (3)	0.4563 (2)	0.0702 (11)	
H2A	0.4920	0.7164	0.5133	0.105*	
H2B	0.4297	0.7717	0.4280	0.105*	
C3	0.6481 (4)	0.9290 (4)	0.4737 (3)	0.1076 (17)	
H3A	0.6210	1.0002	0.4442	0.161*	
H3B	0.6629	0.9515	0.5393	0.161*	
C4	0.7866 (5)	0.9375 (5)	0.4359 (4)	0.109 (2)	
H4A	0.8544	0.9355	0.4853	0.163*	
H4B	0.8408	1.0309	0.4037	0.163*	
C5	0.7491 (4)	0.8119 (4)	0.3719 (3)	0.0829 (13)	
H5A	0.7556	0.8435	0.3084	0.124*	
H5B	0.8189	0.7684	0.3818	0.124*	
P1	0.41303 (8)	0.16922 (8)	0.17730 (5)	0.0439 (2)	
C11	0.3175 (3)	0.1762 (3)	0.07035 (19)	0.0436 (8)	
C12	0.3251 (3)	0.3130 (3)	0.0462 (2)	0.0630 (10)	
H12	0.3753	0.3959	0.0853	0.076*	
C13	0.2575 (4)	0.3253 (4)	-0.0365 (2)	0.0738 (11)	
H13	0.2654	0.4174	-0.0533	0.089*	
C14	0.1803 (3)	0.2046 (4)	-0.0929 (2)	0.0673 (11)	
H14	0.1322	0.2133	-0.1470	0.081*	
C15	0.1729 (3)	0.0681 (3)	-0.0701 (2)	0.0623 (11)	
H15	0.1223	-0.0143	-0.1096	0.075*	
C16	0.2407 (3)	0.0552 (3)	0.0110 (2)	0.0588 (10)	
H16	0.2348	-0.0367	0.0262	0.071*	
C21	0.3574 (3)	-0.0297 (3)	0.1936 (2)	0.0686 (9)	
C22	0.2114 (4)	-0.1258 (4)	0.2214 (3)	0.0904 (14)	
H22	0.1417	-0.0890	0.2340	0.109*	
C23	0.1652 (5)	-0.2791 (4)	0.2311 (3)	0.0955 (17)	
H23	0.0650	-0.3442	0.2483	0.127*	
C24	0.2698 (4)	-0.3304 (4)	0.2147 (3)	0.0820 (13)	
H24	0.2417	-0.4311	0.2227	0.098*	
C25	0.4138 (4)	-0.2375 (3)	0.1870 (2)	0.0745 (11)	
H25	0.4831	-0.2748	0.1746	0.089*	
C26	0.4585 (4)	-0.0872 (3)	0.1769 (2)	0.0614 (10)	
H26	0.5586	-0.0239	0.1586	0.074*	
C31	0.6157 (3)	0.2440 (3)	0.14972 (19)	0.0426 (8)	
C32	0.7206 (3)	0.2612 (3)	0.2213 (2)	0.0549 (9)	
H32	0.6872	0.2443	0.2817	0.066*	
C33	0.8749 (3)	0.3035 (3)	0.2029 (3)	0.0695 (11)	

H33	0.9440	0.3112	0.2505	0.083*	
C34	0.9246 (4)	0.3338 (3)	0.1144 (2)	0.0686 (11)	
H34	1.0283	0.3636	0.1026	0.082*	
C35	0.8257 (4)	0.3211 (3)	0.0435 (2)	0.0664 (11)	
H35	0.8612	0.3434	-0.0163	0.080*	
C36	0.67116 (16)	0.27453 (16)	0.06166 (10)	0.0518 (9)	
H36	0.6026	0.2635	0.0130	0.062*	
Cl1	0.12808 (9)	0.52365 (14)	0.58149 (7)	0.1235 (10)	0.50
Cl2	-0.11177 (9)	0.34498 (14)	0.45802 (7)	0.1810 (16)	0.50
C13	0.02592 (9)	0.65936 (14)	0.44795 (7)	0.1659 (18)	0.50
C37	0.05796 (9)	0.50814 (14)	0.46966 (7)	0.143 (5)	0.50
H37	0.1324	0.5067	0.4278	0.207*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl4	0.0502 (5)	0.1054 (7)	0.1103 (8)	0.0253 (5)	0.0148 (5)	-0.0215 (6)
Ni	0.04922 (18)	0.0602 (2)	0.0474 (2)	0.03066 (15)	0.00490 (18)	0.00314 (17)
S1	0.0667 (4)	0.0665 (5)	0.0618 (5)	0.0378 (4)	0.0182 (4)	0.0040 (4)
S2	0.0594 (4)	0.0589 (4)	0.0717 (6)	0.0267 (4)	0.0177 (4)	-0.0071 (4)
C1	0.0638 (16)	0.0658 (17)	0.0437 (17)	0.0397 (13)	0.0075 (15)	0.0105 (14)
N1	0.0593 (13)	0.0519 (13)	0.0588 (16)	0.0264 (11)	0.0103 (13)	-0.0072 (12)
C2	0.089 (2)	0.0697 (18)	0.066 (2)	0.0492 (15)	0.0069 (19)	-0.0092 (17)
C3	0.099 (3)	0.077 (2)	0.137 (4)	0.033 (2)	0.009 (3)	-0.040 (3)
C4	0.097 (3)	0.088 (3)	0.100 (5)	0.021 (3)	0.011 (4)	-0.041 (3)
C5	0.074 (2)	0.069 (2)	0.093 (3)	0.0221 (19)	0.018 (2)	-0.015 (2)
P1	0.0406 (4)	0.0461 (4)	0.0462 (5)	0.0211 (3)	0.0014 (4)	0.0024 (4)
C11	0.0477 (13)	0.0398 (13)	0.0473 (17)	0.0234 (11)	0.0050 (14)	0.0080 (13)
C12	0.0791 (19)	0.0551 (17)	0.061 (2)	0.0369 (15)	-0.0110 (18)	-0.0067 (16)
C13	0.092 (2)	0.0659 (19)	0.073 (2)	0.0442 (17)	-0.004 (2)	0.0112 (18)
C14	0.0557 (17)	0.088 (2)	0.060 (2)	0.0352 (16)	-0.0135 (17)	0.0069 (18)
C15	0.0595 (19)	0.0636 (19)	0.0527 (19)	0.0196 (16)	-0.0157 (17)	-0.0104 (16)
C16	0.0646 (18)	0.0550 (17)	0.057 (2)	0.0276 (14)	0.0001 (17)	-0.0002 (15)
C21	0.0743 (15)	0.0629 (15)	0.0697 (18)	0.0135 (12)	-0.0012 (15)	-0.0007 (14)
C22	0.067 (2)	0.065 (2)	0.128 (3)	0.0201 (19)	0.024 (2)	0.017 (2)
C23	0.083 (3)	0.062 (2)	0.118 (4)	0.013 (2)	0.017 (3)	0.020 (3)
C24	0.090 (3)	0.0528 (19)	0.092 (3)	0.0238 (18)	-0.019 (2)	0.0194 (19)
C25	0.0838 (19)	0.0535 (17)	0.100 (3)	0.0443 (14)	-0.022 (2)	0.0027 (18)
C26	0.0631 (19)	0.0474 (17)	0.071 (2)	0.0230 (15)	0.0043 (18)	0.0076 (16)
C31	0.0401 (13)	0.0333 (13)	0.0523 (18)	0.0149 (11)	0.0055 (14)	0.0033 (13)
C32	0.0430 (14)	0.0623 (17)	0.062 (2)	0.0268 (13)	0.0016 (16)	-0.0041 (16)
C33	0.0470 (17)	0.068 (2)	0.090 (3)	0.0244 (15)	-0.0150 (19)	-0.0247 (19)
C34	0.0484 (17)	0.0573 (18)	0.093 (3)	0.0183 (14)	0.0086 (19)	-0.0264 (19)
C35	0.0627 (19)	0.0535 (18)	0.073 (2)	0.0175 (16)	0.0182 (19)	-0.0055 (17)
C36	0.0501 (16)	0.0440 (15)	0.0590 (19)	0.0196 (13)	0.0050 (16)	0.0014 (14)
Cl1	0.0964 (16)	0.181 (2)	0.0792 (15)	0.0526 (16)	-0.0068 (13)	-0.0183 (15)
Cl2	0.125 (2)	0.195 (3)	0.172 (3)	0.033 (2)	-0.032 (2)	-0.089 (2)
Cl3	0.176 (3)	0.165 (3)	0.176 (5)	0.105 (2)	0.013 (3)	0.074 (3)

supplementary materials

C37	0.146 (9)	0.103 (6)	0.173 (10)	0.055 (6)	-0.073 (7)	-0.021 (6)
Geometric param	eters (Å, °)					
Cl4—Ni		2,1763 (11)	C14-	-H14	0.93	300
Ni—S2		2.1703 (11)	C15-		1.3	71 (4)
Ni—P1		2 2045 (10)	C15-	_H15	0.9	300
Ni—S1		2 2155 (11)	C16-	_H16	0.9	300
S1—C1		1 705 (3)	C21-		1 30	58 (4)
S2—C1		1.727 (3)	C21-		1.3	75 (4)
C1—N1		1.285 (3)	C22-		1.40)8 (5)
N1—C5		1.456 (4)	C22-	-H22	0.9	300
N1—C2		1.470 (4)	C23-		1.3	59 (6)
C2—C3		1.518 (4)	C23-	-H23	0.9	300
C2—H2A		0.9700	C24-		1.34	47 (5)
C2—H2B		0.9700	C24-	-H24	0.9.	300
C3—C4		1.425 (6)	C25-	C26	1.3	31 (4)
С3—НЗА		0.9700	C25-	-H25	0.9	300
С3—НЗВ		0.9700	C26-	-H26	0.9.	300
C4—C5		1.466 (5)	C31-	C36	1.3	78 (3)
C4—H4A		0.9700	C31-	C32	1.39	91 (4)
C4—H4B		0.9700	C32-	C33	1.3	37 (4)
C5—H5A		0.9700	C32-	—Н32	0.9.	300
C5—H5B		0.9700	C33-	C34	1.30	67 (5)
P1—C31		1.811 (3)	C33-	—Н33	0.9.	300
P1—C11		1.811 (3)	C34-	C35	1.3	57 (5)
P1—C21		1.839 (3)	C34-	-H34	0.9.	300
C11—C16		1.379 (4)	C35-	C36	1.38	35 (3)
C11—C12		1.394 (4)	C35-	—Н35	0.92	300
C12—C13		1.390 (4)	C36-	—Н36	0.92	300
C12—H12		0.9300	Cl1–	–C37	1.72	244
C13—C14		1.353 (4)	Cl2–	–C37	1.7	146
С13—Н13		0.9300	Cl3-	-C37	1.7	193
C14—C15		1.385 (4)	C37-	—H37	0.90	500
Cl4—Ni—S2		167.86 (5)	C12-		119	.6
Cl4—Ni—P1		94.09 (4)	C13-		120	.1 (3)
S2—Ni—P1		95.56 (4)	C13-		119	.9
Cl4—Ni—S1		91.55 (4)	C15-		119	.9
S2—Ni—S1		78.57 (4)	C16-		119	.6 (3)
P1—Ni—S1		173.95 (3)	C16-		120	.2
C1—S1—Ni		86.07 (11)	C14-		120	.2
C1—S2—Ni		86.62 (10)	C15-	C16C11	121	.2 (3)
N1-C1-S1		126.9 (3)	C15-		119	.4
N1-C1-S2		124.6 (2)	C11-	—С16—Н16	119	.4
S1—C1—S2		108.46 (16)	C22-		118	.0 (3)
C1—N1—C5		125.7 (3)	C22-		120	.4 (3)
C1—N1—C2		122.5 (2)	C26-		121	.6 (2)
C5—N1—C2			~ ~ ~			
		111.9 (2)	C21-	-C22-C23	121	.2 (4)

N1—C2—H2A	111.0	C23—C22—H22	119.4
C3—C2—H2A	111.0	C24—C23—C22	118.5 (3)
N1—C2—H2B	111.0	С24—С23—Н23	120.7
C3—C2—H2B	111.0	С22—С23—Н23	120.7
H2A—C2—H2B	109.0	C25—C24—C23	121.0 (3)
C4—C3—C2	107.4 (3)	C25—C24—H24	119.5
С4—С3—НЗА	110.2	C23—C24—H24	119.5
С2—С3—НЗА	110.2	C24—C25—C26	120.2 (4)
С4—С3—Н3В	110.2	C24—C25—H25	119.9
С2—С3—Н3В	110.2	С26—С25—Н25	119.9
НЗА—СЗ—НЗВ	108.5	C21—C26—C25	121.0 (3)
C3—C4—C5	110.3 (3)	C21—C26—H26	119.5
C3—C4—H4A	109.6	С25—С26—Н26	119.5
C5—C4—H4A	109.6	C36—C31—C32	117.9 (2)
C3—C4—H4B	109.6	C36—C31—P1	124.15 (18)
C5—C4—H4B	109.6	C32—C31—P1	117.8 (2)
H4A—C4—H4B	108.1	C33—C32—C31	120.5 (3)
N1—C5—C4	104.0 (3)	С33—С32—Н32	119.8
N1—C5—H5A	110.9	С31—С32—Н32	119.8
С4—С5—Н5А	110.9	C34—C33—C32	119.5 (3)
N1—C5—H5B	110.9	С34—С33—Н33	120.2
С4—С5—Н5В	110.9	С32—С33—Н33	120.2
H5A—C5—H5B	109.0	C35—C34—C33	121.4 (3)
C31—P1—C11	104.79 (13)	С35—С34—Н34	119.3
C31—P1—C21	101.92 (13)	С33—С34—Н34	119.3
C11—P1—C21	105.22 (13)	C34—C35—C36	118.9 (3)
C31—P1—Ni	115.11 (9)	С34—С35—Н35	120.6
C11—P1—Ni	108.83 (10)	С36—С35—Н35	120.6
C21—P1—Ni	119.61 (10)	C31—C36—C35	121.8 (2)
C16—C11—C12	118.6 (3)	С31—С36—Н36	119.1
C16—C11—P1	124.0 (2)	С35—С36—Н36	119.1
C12—C11—P1	117.4 (2)	Cl2—C37—Cl3	110.5 (2)
C13—C12—C11	119.7 (3)	Cl2—C37—Cl1	108.6 (2)
C13—C12—H12	120.2	Cl3—C37—Cl1	108.5 (2)
C11—C12—H12	120.2	Cl2—C37—H37	109.7
C14—C13—C12	120.7 (3)	Cl3—C37—H37	109.7
C14—C13—H13	119.6	Cl1—C37—H37	109.8

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C37—H37…S1	0.96	2.40	3.280(1)	151.6

Fig. 2